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Abstract

This document presents an algorithm for computing the fluid forcing required to impose the bound-
ary conditions associate with the turbulent planetary boundary layer near the ice shelf/ocean in-
terface. The implementation is indended for use in an Immersed Boundary Method (IBM) imple-
mented in the Parallel Ocean Program (POP), and is intended for use in the near future in coupling
the physics between POP and Glimmer: The Community Ice Sheet Model (Glimmer-CISM). The
analytic solutions for the variation of the velocity and the active tracer quantities (temperature and
salinity) in the boundary layer.

1. Nomenclature

Symbol Description
a = (1−η∗)/(η∗ξN)

aT salinity coefficient in linearized freezing temperature formula
b(x,y) the (positive) height field representing the ice/ocean interface

bT temperature offset in linear freezing point relaiton
CD non-dimensional drag coefficient
cp,i specific heat capacity of ice
cp,o specific heat capacity of ocean

cT pressure coefficient in linearized freezing temperature formula
f magnitude of Corilois parameter (always positive)
g acceleration of gravity

H(x,y) the (positive) depth of the bathymetry below sea level
i =

√
−1

K eddy viscosity
Kh turbulent diffusivity of heat
KS turbulent diffusivity of salt

k = 0.4, von Karman’s constant
L = ρou3

∗/
[
gk
(
γS
〈
u′zS

′〉
0− γT

〈
u′zT

′〉
0

)]
, Obukhov length

L f latent heat of fusion
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Symbol Description
n distance from interface (positive into ice)

n0 surface roughness
nbl = −ku∗η∗/ f , edge of the boundary layer
nref reference distance from interface
nsl −u∗η2

∗ξN/ f , edge of the surface layer
p0 pressure at interface (depth dependent)
Rc = 0.2, critical Richardson number
S salinity

S0 salinity at interface
T temperature
T0 temperature at interface
û = η∗(ut −ut,∞)/u∗, complex non-dimensional tangential velocity deviation

û0 complex non-dimensional tangential surface velocity deviation
ui the velocity of the ice at the interface (supplied by the ice sheet model)
un normal velocity

un,melt melt rate in ocean
un,melt,i melt rate of ice

ut complex tangential velocity
ut,∞ complex tangential velocity outside the boundary layer
u∗ complex surface friction velocity
χ = ±1, positive for northern, negative for southern hemisphere
δ = (χi/kξN)1/2, complex attenuation coefficient

η∗ = (1+ξN µ∗/(Rc f L)1/2, stability parameter
κT

i molecular diffusivity heat in ice
κS

o molecular diffusivity salt in ocean water
κT

o molecular diffusivity heat in ocean water
λ one of {T,S}

µ∗ = u∗/( f L)
ν molecular viscosity of ocean water

ΦT,S non-dimensional change of {T,S} over boundary layer
ΦT,S,ref non-dimensional reference value for change of {T,S}

Φturb non-dimensional change of {T,S} due to turbulence
Φmol

T,S non-dimensional change of {T,S} due to molecular processes
ρi density of ice at interface
ρo density of ocean water at interface
ξN = 0.052, dimensionless universal constant
ζ = f n/u∗η∗, non-dimensional distance from interface (positive into ice)

ζ0 non-dimensional surface roughness
ζref reference non-dimensional distance from interface
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2. Forcing Points in the Immersed Boundary Method

The Immersed Boundary Method (IBM) used to represent the boundary between the ice shelf
and the ocean in the Parallel Ocean Program (POP) can apply forcing at grid points adjacent to the
boundary location that are either just exterior to the fluid (ghost points) or just interior to the fluid
(band points). Ghost points have the desirable property that the forcing does not directly modify
the fluid in the “real” portion of the computational domain, but only the “fictitious” portion that
is simulated within the solid body (the ice shelf). For this reason, I have opted to use the ghost
point forcing, exterior to the “real” fluid domain in my IBM. For each ghost point, I first use an
interpolation method to compute the value of the fluid properties at an image point that lies in the
real fluid. Then I linearly extrapolate values for the fluid properties at each ghost point using the
image and boundary values.

3. Tangential velocity boundary layer solution

McPhee (1981) proposed an analytic solution for the mean tangential velocity (mean in the
sense of the Reynolds average) within the turbulent boundary layer below the ice/ocean interface.
The velocity solution is broken into two parts, one for the sublayer in which the eddy viscosity
varies with distance from the interface and where viscous and roughness effects play a role, and
one for the outer layer in which the eddy viscosity can be considered to be constant. The velocity
solution is represented as a complex number, where the real part is the x component and the
imaginary part is the y component. The non-dimensional form of the solution is (McPhee, 1981,
Eq. (17)):

û =

{
−iχδeδζ ζ ≤−ξN

−iχδe−δξN − η∗
k

[
ln |ζ |

ξN
+(δ −a)(ζ +ξN)− a

2δ (ζ 2−ξ 2
N)
]
, ζ >−ξN

, (1)

where k = 0.4 and ξN = 0.052 are universal constants, where χ = ±1 (positive in the northern
hemisphere, negative in the southern), δ = (χi/kξN)1/2 where û = η∗(ut −ut,∞)/u∗ and ζ =
f n/u∗η∗, and where u∗ is the friction velocity (with magnitude equal to the square root of the
magnitude of the kinematic stress) at the interface, ut,∞ is the velocity outside the boundary layer,
f is the (positive) local Coriolis parameter, and n is the distance from the interface in the direction
normal to the interface (negative into the ocean, so that if the interface is horizontal, n = z, the usual
height above sea level). The effects of buoyancy are parameterized in terms of L, the Obukhov
length scale, or non-dimensional parameters µ∗, η∗ and a involving this length:

L ≡ ρou3
∗

gk
(
γS
〈
u′zS′

〉
0− γT

〈
u′zT ′

〉
0

) , (2)

µ∗ ≡
u∗
f L

, (3)

η∗ ≡
(

1+
ξN µ∗

Rc

)−1/2

, (4)

a ≡ 1−η∗
η∗ξN

, (5)
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where γS and γT are the expansion coefficients for salinity and temperature, respectively, and where
Rc ≈ 0.2 is the critical Richardson number. The Reynolds averaged vertical salinity flux

〈
u′zS

′〉
0

and temperature flux
〈
u′zT

′〉
0 will be discussed in Sec. 4, where methods are given for computing

these values in terms of the bulk fluid properties.
Values for ut,∞ and u∗ can be found from the velocity ut(nref) at some reference height nref

(with corresponding non-dimensional value ζref), and the fact that

ut(n0) =ut,i = ui · t̂≈ 0, (6)

where n0 is the roughness length scale with corresponding non-dimensional value ζ0:

û(ζref) = η∗
ut(nref)−ut,∞

u∗

= (−iχδ )eδζref (7)

û0 = η∗
ut(n0)−ut,∞

u∗

=−η∗
ut,∞−ut,i

u∗

=
{
−iχδe−δξN − η∗

k

[
ln
|ζ0|
ξN

+(δ −a)ξN +
a
2

δξ
2
N)
]}

, (8)

where we take the outer solution for û regardless of the value of ζref in Eq. (7), and where we have
assumed that |ζ0| � ξN in Eq. (8). Wall roughness is more commonly expressed in terms of a drag
coefficient CD, rather than as a roughness length scale. Eq. (8) is dominated by the term involving
ζ0 as long as buoyancy effects are negligible; this is the only term considered for the so-called
quadratic drag formulation. Under these assumptions, the scalar version of Eq. (8) reduces to

ut,∞−ut,i ≈−u∗
1
k

ln
|ζ0|
ξN

. (9)

Comparison with the quadratic drag relation,

u2
∗ ≡CD(ut,∞−ut,i)2, (10)

allows us to relate ζ0 to CD:

CD =
(
−1

k
ln
|ζ0|
ξN

)−2

, (11)

ζ0 =−ξNe−k/
√

CD. (12)

3.1. Iterative algorithm
Given values for nref and ut,ref = ut(nref) (and assuming fixed η∗ and a), we need an algorithm

for finding ut,∞ and u∗. A successful iterative algorithm that converges quickly (typically in less
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than ten iterations) is the following:

û0 =
{
−iχδe−δξN − η∗

k

[
ln
|ζ0|
ξN

+(δ −a)ξN +
a
2

δξ
2
N)
]}

u0
t,∞ = ut,ref

u0
∗ =−η∗

u0
t,∞−ut,i

û0

for k = 1,2, ...kmax

ζ
k−1
ref =

nref f
η∗|uk−1

∗ |

uk
∗ =−urefη∗

û0

1

1+ iχδ

û0
eδζ

k−1
ref

ε =

∣∣uk
∗−uk−1

∗
∣∣∣∣uk

∗
∣∣

if ε < 10−6

break
end if

end for

ut,∞ =−u∗û0

η∗
+ut,i

4. Coupled temperature and salinity boundary layer solution

The boundary layer structure of temperature and salinity are similar to those found in McPhee
et al. (1987) and in Holland and Jenkins (1999). The so-called three equations, those for freezing
temperature of sea water, heat flux and salt flux, must be simultaneously satisfied at the wall:

T0 = aT S0 +bT + cT p0(z0), (13)

QT
i −QT

o = QT
latent, (14)

QS
i −QS

o = QS
brine, (15)

where z0 is the height (negative below sea level) of the interface. Subscripts i and o represent
ice and ocean properties, respectively, while subscript 0 represents quantities at the interface.
Equation (13) is a linearization of the freezing point valid for salinity in the range 4–40 psu.
Equation (14) can be expanded as

−ρicp,iκ
T
i

(Ti−T0)
∆ni

−ρocp,o
〈
u′nT ′〉

0 =−ρoun,meltL f , (16)

where ρi and ρo are the densities of ice and ocean water, respectively, at the interface, cp,i and
cp,o are the specific heat capacities of ice and ocean water, respectively, L f is the latent heat of
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fusion, and un,melt is the melt rate in the ocean (related to the ice melt rate by mass continuity,
ρoun,melt = ρiun,melt,i). I have assumed that the temperature flux of ice can be parameterized in
terms of its molecular diffusivity, κT

i , and using some reference temperature Ti = Ti(∆ni) a distance
∆ni above the ice/ocean interface. Similarly, the equation for salt flux can be reduced to

−ρo
〈
u′nS′

〉
0 =−ρoun,meltS0, (17)

where I have assumed that the salinity of the ice shelf is zero for all time (and therefore that the
salt flux into the ice is also zero). This assumption will not be valid when frazil ice forms under ice
shelves, but this process is thought to occur predominantly outside the ocean boundary layer, with
saline ice being driven upward toward the ice/ocean interface by buoyancy (Holland and Jenkins,
1999). Therefore, the process of ice formation with nonzero salinity will not be considered within
the boundary layer formulation.

Following McPhee et al. (1987), we can express the Reynolds averaged turbulent heat and
salinity fluxes in terms of diffusion of bulk temperature and salinity normal to the interface,〈

u′nT ′〉
0 =

ρi

ρo

cp,i

cp,o

κT
i

∆ni
(Ti−T0)+un,melt

L f

cp,o
=−Kh

∂T
∂n

, (18)

〈
u′nS′

〉
0 = un,meltS0 =−KS

∂S
∂n

, (19)

where Kh and KS are the turbulent plus molecular diffusivities for heat and salinity, respectively,
analogous to the eddy viscosity commonly used in closures for the Reynolds averaged momen-
tum equation. Equations (18) and (19) can be non-dimensionalized and then integrated from the
interface to an arbitrary normal distance n to obtain

T (n)−T0

〈u′nT ′〉0 /u∗
= ΦT (n) =

∫ 0

n

u∗dn′

Kh
, (20)

S(n)−S0

〈u′nS′〉0 /u∗
= ΦS(n) =

∫ 0

n

u∗dn′

KS
. (21)

I will assume that T (n) and S(n) have known values Tref and Sref at some reference distance
from the interface nref, as I did for the tangential velocity in Sec. 3, and that ΦT,S are known at this
same reference distance (see below). With this assumption, I eliminate the unknown quantities T0
and un,melt in Eqs (13), (20) and (21) leaving an equation in a single unknown, S0, the salinity at
the interface:

0 = c2S2
0 + c1S0 + c0, (22)

c2 = aT (d1−1), (23)
c1 = (Tref−bT − cT p0)−d1(Ti−bT − cT p0)+d2, (24)
c0 =−d2Sref, (25)

d1 = ΦT,ref
ρi

ρo

cp,i

cp,o

κT
i

∆niu∗
, (26)

d2 =
ΦT,ref

ΦS,ref

L f

cp,o
. (27)
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Equation (22) can be solved using the quadratic formula. If only one real, positive root exists, I
take this to be the solution. Alternative methods for finding S0 may be required to handle cases
where Eq. (22) has either zero or two real, positive solutions. Once a solution for S0 has been
found, values for un,melt and T0 can be computed from Eqs. (13), (19) and (21)

T0 = aT S0 +bT + cT p0, (28)

un,melt = u∗
(Sref−S0)
ΦS,refS0

. (29)

The remaining task is to specify the functional form for ΦS,T (n). This is accomplished as in
McPhee (1983) and McPhee et al. (1987) by assuming that the salinity and heat fluxes fall off
linearly from their surface values to zero at the edge of the boundary layer

〈
u′nλ

′〉=−K
∂λ

∂n
=
〈
u′nλ

′〉
0

(
1− n

nbl

)
, (30)

nbl =−ku∗η∗/ f , (31)

where λ is one of T or S. The two papers differ slightly on how they assume the eddy viscosity
(assumed to be the same as the turbulent diffusivity for both salinity and temperature) varies within
the surface layer, and therefore how thick the surface layer is. McPhee et al. (1987) assumes the
eddy viscosity is linear within the surface layer and constant within the outer layer

K =
{
−knu∗ n0 > n ≥ nsl,
−knslu∗ nsl > n ≥ nbl,

(32)

nsl =−u∗η2
∗ξN/ f . (33)

With this definition, Eq. (30) can be integrated with respect to n. For n outside the surface layer,
n > nsl,

λ (n)−λ0

〈u′nλ ′〉0 /u∗
=Φturb(n)

=− 1
k

∫ n0

nsl

(
1
n′
− 1

nbl

)
dn′− 1

knsl

∫ nsl

n

(
1− n′

nbl

)
dn′ (34)

In the limit that |n0| � |nsl|, this integral is

Φturb(n) =
1
k

ln
nsl

n0
− 1

k
+

n
knsl

− n2

2knslnbl
. (35)

McPhee et al. (1987) argues that molecular fluxes must also be taken into account

Φ
mol
T,S = b

(u∗n0

ν

)1/2
(

ν

κ
T,S
o

)2/3

, (36)
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where ν is the viscosity of ocean water, κT
o and κS

o are the molecular diffusivities of temperature
and salinity, respectively, and where b = 1.57 is a universal constant found by fit to observations.
The total non-dimensional change in temperature and salinity from the surface to a distance n is
the sum of Eqs. (35) and (36),

ΦT,S(n) = Φturb(n)+Φ
mol
T,S . (37)

Since the buoyancy flux is directed vertically upward whereas the surface normal need not be
vertical (though it will, in general, be close to vertical because of the large horizontal to vertical
aspect ratio of the system), it is necessary to specify the relationship between 〈u′nλ ′〉0 and

〈
u′zλ

′〉
0

(where, again, λ = {T,S}), in order to compute the Obukhov length, Eq. (2). It seems reasonable
to assume that the impact of buoyancy on the shape of the boundary layer normal to the interface
will go to zero as the interface becomes vertical (L → ∞, µ∗→ 0, η∗→ 1 and a → 0). Since

u′z = u′ · ẑ = u′t t̂ · ẑ +u′nn̂ · ẑ, (38)

this suggests that 〈u′tλ ′〉0 contributes negligibly to the vertical fluxes, so that the vertical flux of
temperature and salinity is 〈

u′zλ
′〉

0 =
〈
u′nλ

′〉
0 nz, (39)

where nz = n̂ · ẑ is the vertical component of the unit normal vector pointing from the ocean into
the ice. Equation Eq. (2) becomes

L =
ρou3

∗
gknz (γS 〈u′nS′〉0− γT 〈u′nT ′〉0)

, (40)

where 〈u′nT ′〉0 and 〈u′nS′〉0 are computed from Eqs. (20) and (21), respectively.
Computation of u∗ and u∞ requires knowledge of L, and therefore of T0 and S0. Since compu-

tations of T0 and S0 themselves involve u∗, it is necessary to solve for all four of these parameters
simultaneously using and iterative method, as proposed in McPhee et al. (1987). The iterative
procedure begins by assuming neutral stability, giving values for u∗ and u∞ that do not depend on
T0 and S0. Using this value for u0, T0 and S0 can be computed. The results are used to compute a
new value of L, µ∗, η∗ and a. The process is repeated by obtaining new values of u∗ and u∞, and
so on until a convergence criterion is met.

5. Interdependence of values at image points and boundary points

5.1. Tangential velocity
The picture becomes somewhat more complicated when the boundary layer solutions are ap-

plied within the IBM. We do not, in general, know the value of velocity, temperature or salinity at
image points (the same as the values at nref in the previous sections) independently of their values
at the boundary point of interest. This is because the value of a property at the image point is
found by interpolation from neighboring values, including those at the boundary point. Since the
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value at the boundary point depends on the value at the image point, the we must simultaneously
solve for both the image and boundary values.

The image value is found by interpolation (the linear sum of values at neighboring points times
weights), which may include the boundary point. In what follows, we will assume the image point
to be at a distance n from the boundary. (The boundary point is, of course a distance 0 from the
boundary.) First, the decomposition of the velocity into normal and tangential components bears
some exploration. The full velocity at the image point can be found via interpolation separately in
the horizontal and vertical direcitons as follows:

uR(n) =x̂

(
J−1

∑
j=1

wx, jux, j +wx,Jux(0)

)
+ ŷ

(
K−1

∑
k=1

wy,kuy,k +wy,Kuy(0)

)

+ ẑ

(
L−1

∑
l=1

wz,luz,l +wz,Luz(0)

)
, (41)

=ũR +W RuR(0), (42)

ũR ≡x̂

(
J−1

∑
j=1

wx, jux, j

)
+ ŷ

(
K−1

∑
k=1

wy,kuy,k

)
+ ẑ

(
L−1

∑
l=1

wz,luz,l

)
, (43)

W R ≡

 wx,J 0 0
0 wy,K 0
0 0 wz,L

 , (44)

where the sums are over real fluid points, where ws are the interpolation weights, and where wx,J ,
wy,K and/or wz,L may be zero if the boundary point is not included in the interpolation scheme
for the image point velocity value. Superscripts R indicate that the velocities and the weighting
matrix are expressed in the “regular” coordinate system {x,y,z}, rather than the “tilted” coordinate
system defined below. The velocity at n has been expressed in terms of the known contribution ũ
and the unknown contribution from u(0).

We define the tilted coordinate system aligned with the interface in terms of unit vectors t̂, ŝ
and n̂ (analogous to x̂, ŷ and ẑ, respectively), with n̂ normal to the surface, pointing from the
ocean into the ice. We define the unit vectors tangent to the interface as

t̂≡ ũt

|ũt |
, (45)

ŝ≡−t̂× n̂, (46)

where

ũt =ũ− ũnn̂, (47)
ũn =ũ · n̂. (48)

We can define a matrix R that rotates a vector from the regular to the tilted coordinates:

R≡

 tx ty tz
sx sy sz
nx ny nz

 . (49)
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Then, the equivalent of Eq. (42) in the tilted coordinate frame is

u(n) =ũ+Wu(0), (50)

=RuR(n), (51)

W ≡RW RR−1, (52)

R−1 =RT . (53)

Equation (50) relates the three unknown velocity components at n to the three velocity components
at 0. The two tangential velocity components at the interface are unknown (since we assume the
ocean slips relative to the ice when the surface layer is not resolved). The normal velocity at the
interface,

un(0) =un,i, (54)

is known from the ice sheet model and the “no penetration” normal boundary condition. We split
Eq. (50) into its tangent and normal components, making use of Eq. (54),

un(n) =ũn +wntun(0)+wnsus(0)+wnnun,i, (55)

ut(n) =ũt +
[

wtn
wsn

]
un,i +

[
wtt wts
wst wss

]
ut(0), (56)

=u†
t +W †ut(0), (57)

u†
t ≡ũt +

[
wtn
wsn

]
un,i, (58)

W † ≡
[

wtt wts
wst wss

]
. (59)

Once ut(0) is known (as described below), Eq. (55) can be used to find the normal velocity at the
image point.

Making use of Eqs. (7) and (8), where the former is evaluated at nref = n and nref = 0 (but
assuming that the outer layer solution continues all the way to the boundary so that we avoid the
very rapid change in velocity associated with the surface layer solution), we have

ut,∞ =− û0u∗
η∗

(60)

ut(n) =ut,∞−
u∗iχδ

η∗
eδn f /|u∗|η∗ (61)

ut(0) =ut,∞−
u∗iχδ

η∗
(62)

Equations (57), (60), (61) and (62) can be solved simultaneously using an iterative scheme
similar to the one in Sec. 3.1. The term used to compute uk

∗ in terms of ζ
k−1
ref is replaced by

uk
∗ =−η∗M

−1u†
t (n), (63)

M ≡
[
û0 + iχδeδζref

]
−W † [û0 + iχδ ] , (64)
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where complex numbers in M must be replaced by matrices as follows:

a+ ib →
[

a −b
b a

]
. (65)

Note that, if W = 0, then ut(n) = u†
t (n) = ut,ref, and we recover the same term as in Sec. 3.1.

In general, |W | � 1, so that the terms involving W will be small perturbations to the earlier
scheme, not expected to affect its convergence properties.

We compute the total velocity at a given ghost point using linear extrapolation from the bound-
ary and image values,

u(−n) = 2u(0)−u(n). (66)

The normal component of velocity at the interface is supplied by the ice sheet model. The total
fluid velocity at the interface is

u(0) = ut(0)t̂+us(0)ŝ+un,in̂. (67)

The value of u(n) can be found from Eq. (50), now that all terms in this equation are known.
From Eq. (66), the horizontal and vertical velocity components of the velocity can be computed
for ghost points on the U and W grids, respectively.

5.2. Normal velocity, temperature and salinity
Temperature and salinity at the image point are related to their respective values at the bound-

ary point by the relations

T (n) =
N−1

∑
j=1

w jTj +wNT (0), (68)

S(n) =
N−1

∑
j=1

w jS j +wNS(0), (69)

where the sums are over nearby neighbors that are in the fluid. Incorporating Eqs. (68) and (69)
into the solutions for temperature and salinity from Sec. 4 is a bit messier, but we will see that
the result is still a quadratic equation for S0, the salinity at the interface, whose solution can be
used to compute the melt rate, interface temperature, and temperatures and salinities at the image
and boundary points. These equations, together with Eqn. (13) for the freezing temperature and
Eqns. (20) and (21) evaluated at nref = n lead to five total equations in the five unknowns S0, T0,
un,melt, T (n), and S(n). The five equations can be written as follows

S(n) =c0 + c1S0, (70)
T (n) =c2 + c3T0, (71)
T (n) =c4 + c5T0 + c6un,melt, (72)

T0 =c7 + c8S0, (73)
S(n) =c9S0 + c10un,meltS0, (74)
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where the constants cn are given by

c0 =
N−1

∑
j=1

w jS j, (75)

c1 =wN , (76)

c2 =
N−1

∑
j=1

w jTj, (77)

c3 =wN , (78)
c4 =b0ΦT (n)Ti, (79)
c5 =1−b0ΦT (n), (80)

c6 =
L f

u∗cp,o
ΦT (n), (81)

c7 =bT + cT p0, (82)
c8 =aT , (83)
c9 =1, (84)

c10 =
ΦS(n)

u∗
, (85)

and where

b0 =
ρi

ρo

cp,i

cp,o

κT
i

∆niu∗
. (86)

All unknowns except for S0 can be eliminated from Eqs. (70)–(74):

0 = e0 + e1S0 + e2S2
0, (87)

where

e0 =d2d3, (88)
e1 =d2d4−d0d5, (89)
e2 =−d1d5, (90)
d0 =c2 + c3c7− c4− c5c7, (91)
d1 =c3c8− c5c8, (92)
d2 =− c6, (93)
d3 =c0, (94)
d4 =c1− c9, (95)
d5 =− c10. (96)

We solve Eq. (87) using the quadratic formula. If the roots are complex or negative, an alternative
formulation of the problem is required. If one root is positive while the other is not, the positive
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root is the physical solution. For the time being, if both roots are positive, the smaller root is
assumed to be the physically real root. (We need a more sophisticated method that takes into
account whether melting or freezing is occurring!). Given S0, we find the melt rate using the
relation

un,melt =
−d0−d1S0

d2
, (97)

T0 using Eq. (73), T (n) using Eq. (72) and S(n) using Eq. (74).

5.3. The barotropic momentum
For this section, we use the notation of the POP reference manual, Smith and Gent (2002),

where u is the horizontal velocity, w is the vertical velocity, ∇ is the horizontal gradient, etc.
A complication of imposing the full velocity at ghost points is that the velocity must remain di-

vergence free. Since the geometry of the interface is specified using a height field (and, therefore,
there is only one boundary intersection per vertical column), we can use the barotropic momen-
tum and continuity equations to insure that the flow simultaneously remains divergence free and
satisfies the boundary conditions on the vertical velocity. This can be accomplished by solving the
rigid lid barotropic equations only in the region of “real” flow, between z =−b and z =−H. The
modified version of Eq. (126) from Smith and Gent (2002), the elliptic equation for the sea surface
height ηn+1 (where the sea surface height can be related to the surface pressure by ps = ρogη) is
given by

∇ · (H−b)∇η
n+1 =∇ · (H−b)

[
Û

gατ
+∇η

n−1

]
+

wb

gατ
, (98)

where Û is the auxiliary velocity as defined in Eq. (124) of Smith and Gent (2002), α = 1/3,
τ = 2∆t is twice the time step, and where the vertical velocity at the interface wb is given by

wb =u(x,y,z =−b(x,y)) · ẑ, (99)

which is computed by linear interpolated from the ocean grid cells above and below z =−b. This
should reproduce wb = un,i to a good approximation when the interface is oriented horizontally.

There are three different integrals used to convert between barotropic and baroclinic momen-
tum formulations. These are the vertical integral of the baroclinic velocity (which is required to be
zero), the vertical integral of the explicitly treated forcing terms, and the integral used to compute
the vertical component of the velocity. These first two integrals are performed as usual, except that
the horizontal velocity and forcing are multiplied by a mask. Equation (97) from Smith and Gent

13



(2002) becomes

ũ′
k =u′

k−
1

HU

km

∑
k′=1

mU,k′dzk′u
′
k′, (100)

mU,k =
HU

HU −bU


0 k < kb
δU k = kb
1 k > kb

(101)

zkb− 1
2
≥−bU ≥ zkb+ 1

2
, (102)

δU =
−bU − zkb+ 1

2

∆zkb

. (103)

Similarly, the barotropic forcing term is computed by

FB =
1

HU

km

∑
k=1

mU,kdzkFk. (104)

The vertical velocity is computed in two stages. First, it is computed by integrating the divergence
free condition vertically downward from the surface as usual

w′
k+ 1

2
=w′

k− 1
2
+∆zk∇ ·uk, (105)

with the appropriate upper boundary condition. Then, a correction is made so that the vertical
velocity is correct at the boundary

wkb+ 1
2
=wb +∆zkb∇ ·

(
δUu,kb

)
, (106)

zkb− 1
2
≥−max{bU} ≥ zkb+ 1

2
, (107)

wk+ 1
2
=w′

k+ 1
2
+
(

wkb+ 1
2
−w′

kb+ 1
2

)
. (108)

In this case, some of the δU ’s may be greater than one, in which case the interface intersects more
than one cell in the vertical column, and continuity should be considered separately in each cell.
For the time being, we will ignore this case, and address it later if doing so turns out to cause
significant errors.

6. Boundary condition for underresolved boundary layers

Complications arise when the boundary layer is not resolved (which is nearly always the case,
given the default spacing between vertical layers in POP. If the property we would like to faithfully
reproduce at the boundary is the outer boundary layer solution, evaluated at the boundary then the
scheme from Sec. 5.1 is adequate. On the other hand, if we would like the stress due to surface drag
to be correct, we can assign a “partial slip” surface velocity such that the stress tensor computed
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in POP has the desired value at the surface (at least in the limit where the surface is oriented
vertically). Vertical shear stresses in POP are approximated by

τx,z =νvert
∂ux

∂ z
, (109)

τy,z =νvert
∂uy

∂ z
, (110)

τz ≈νvert
uk−uk+1

∆zk+ 1
2

, (111)

where νvert may be a function of horizontal or all three dimensions, and is computed using one of
three available vertical mixing schemes, and where k is the vertical index and ∆zk+ 1

2
is the vertical

spacing between U grid points. The boundary layer formulation in the previous sections defines
the shear stress due to tangential flow at the interface by

τn = |u∗|u∗. (112)

Since the normal is nearly vertical, assume that it is not too bad an approximation to equate Eqs.
(111) and (112), with the finite differences now taken between the image and boundary point
values. (We replace uk by ut(0), uk+1 by ut(n) and ∆zk+ 1

2
by |n|.)

νvert
ut(n)−ut(0)

n
= |u∗|u∗. (113)

This relation replaces Eq. (62), relating ut(0), ut(n) and u∗. (In the limit that n → 0 and when
νvert = ξNku2

∗η
2
∗/ f , the eddy viscosity as defined in the outer boundary layer, Eq. (113) is satisfied

by the analytic solution for ut(0) given by Eq. (62).) Solving Eqs. (57), (60), (61) and (113) for
u∗, we modify the iterative scheme from Sec. 3.1 with the following expression for uk

∗:

uk
∗ =−M−1u†

t (n), (114)

M ≡ 1
η∗

(
I−W †

)[
û0 + iχδeδζ

k−1
ref

]
−

n
∣∣uk−1

∗
∣∣

νvert
W †. (115)

In the future, it may be worthwhile to take into account the fact that the boundary is not vertically
aligned, so that the normal shear of the tangential velocity τn is not the same as the vertical shear
of the horizontal velocity τz.

A similar approach is required for computing T (0) and S(0), which are, in general, not equal
to T0 and S0, respectively. POP represents (turbulent) vertical diffusion of a tracer λ by

〈
u′zλ

′〉
0 ≈−κvert

λk−λk+1

∆zk+ 1
2

, (116)

≈−κvert
λ (n)−λ (0)

n
(117)
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where the tracer flux is given by an equation analogous to Eq. (20),

λ (n)−λ0

〈u′nλ ′〉0 /u∗
= Φλ (n). (118)

By eliminating 〈u′nλ ′〉0, we have

λ (0) =λ (n)−κ
†(λ (n)−λ0), (119)

κ
†
λ
≡ |n|u∗

κvertΦλ (n)
. (120)

Note that λ (0) = λ0 if κ† = 1. The algorithm from Sec. 5.2 for computing boundary values only
requires slight modification, where interpolation now makes use of λ (0) instead of λ0

λ (n) =λ
†(n)+wNλ (0), (121)

λ
†(n)≡

N−1

∑
j=1

w jλ j, (122)

By eliminating λ (0) in Eqs. (119) and (121), we find that the algorithm form Sec. 5.2 only need
be modified by replacing values for c0 to c3 by

c†
0 =

c0

1−wN(1−κ
†
S )

, (123)

c†
1 =

c1κ
†
S

1−wN(1−κ
†
S )

, (124)

c†
2 =

c2

1−wN(1−κ
†
T )

, (125)

c†
3 =

c3κ
†
T

1−wN(1−κ
†
T )

. (126)

Then, Eq. (30) is used to find λ (0).
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